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A new half-range differential approximation for radiative transfer
with spherical symmetry is presented. The development is motivated by
the various failures of existing approximations in determining emissive-
power distributions and heat transfer for concentric—spheres problems.
The new approach represents a modification of the four-moment double
spherical-harmonics method, to which it‘reducés in the planar limit.

The difference is effected by relocating the discontinuity of the
assumed directional distribution of radiation intensity. The shift
takes the discontinuity from precisely on the division between radially
inward and radially outward, to just within the radially - outward
directional half range. The method is tested on a variety of concentric
spheres problems with and without internal heat sources, reproducing

all the important features of the exact results. Over the range of
problems treated, the new half~range method is shown to be more

uniformly successful than any of the other approximations considered.
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NOMENCLATURE

B = Blackbody steradiancy, ocTt/

1 = intensity of radiation

& th : .

Iy = n 4+ half-range directional moments

th . :

In = n~ directional moment

K = volumetric absorption coefficient

N = exponent in assumed temperature distribution, Eq. (50)
q = Hopfs' function

= total rate of heat generation

Q‘l = rate of heat transfer to inner wall, with internal heat generation
r = radial coofdinate, Fig. 1

S = volumetvic heat - 3ene\rd:;o\n rate
A = S/K

T = temperature

b4 = dimensionless distance, ( Y -Yo )/ ( %~ Ya )

i - 4 - :

b = (Iu s g s La
N

8on = Kronecker delta

e = azimuthal angle, Fig. 1

»r = cos ©

E = radius ratio, "%/ Ya

o = Stefan ~ Boltzman constant

-«.‘ —

T = optical coordinate , Kyvr = ‘I.x“’(-g"‘) ] Lo
T

L= optical thickness 5 X ((b = ‘fa)




dimensionless emissive power (Ewb*‘B)/(Bwb“ Bwa) 9

for no internal heat generation

dimensionless emissive power

internal heat generation

SUPERSCRIPTS

(1) = first fundamental solution

(2) = second fundamental solution
(i) = dinner expansion

(o) = outer expansion

SUBSCRIPTS

a = conditions at inney radius

b = conditions at owter radius

P = particular solution

w = surface condition

WTES/ A , for uﬁiform




I. INTRODUCTION

Radiative energy transfer in spherically-symmetric media has
become an increasingly studied and practical problem in recent years.
Of particular interest in many applicatiors is the determination of
emissive power mnd radiation flux between concentric spheres, to be
considered here. For this problem, with an absorbing- emitting gray
gas, numerical solutions of the governing exact integral equations
have been given both with internal heat generation (Sparrow, Usgskin
and Hubbardl; Chisnellz), and without (RhymingB; Viskanta and Crosbieé)g
Often however, the éxact formulation is difficult to apply and solutions
are prohibitively expensive. On the other hand, the approximate methods
that have been developed have all met with various failures.

One of the earliest and perhaps best known approximations is the
spherical-harmonics method, known in its lowest level as the differential
approximation (Vincenti and Krugers). The breakdown of the sperical-

-hafmgnics method in nonplanar geometries is well known (Chisnellz;

Cessé; Dennar and Sibulkin7; 01fe8; Traugottg). While other ap-

10

proximations have been divised (01fe8; Traugottg; Chou and Tien ;

Huntll), it appears from these references and the findings of the
present study that none are uniformly successful in treating concentric

~spheres problems.

From the stand point of simblicity and generality, Trougott’s9

"improved differential approximation' is of special interest. Working
with the first four moment equations, Traugott retained the classical

framework of the spherical~harmohics approach. In the classical approach,




the directional-distribution of radiation intensity is expanded in spherical

harmonics, and truncated to leave as many terms as the number of moment
equations desired. This implies algebraic relations among the mbments,
which serve to close the system of moment equations. In Traugott's
method the coefficients of the closure condition are modified for consistency
with both isotrqpy and undirectional, radial beams (for this as well as
any other closure scheme, many distributions may be consistent with the
closure condition). The method avoids explicitly building in the shadow
of the inner sphere, but does admit the singular distribution that occurs
in the difficult transparent case with small inner sphere. For the general
case, the method approximately accounts for the inner-sphere shadow. This
scheme led, in Traugott's paper, to encouraging success when applied to the E
problem of radiation between concentric spheres without internal heat genaraé
tion. In the present study, Traugott's method has been applied to problems
with internal heat generation, Unfortunately, the new results, presented .
herein, are disappointing.
Nevertheless, the present approximation is in a certain sense in the
same spirit as Traugott's. The key to the success of this new method however, i

is the half-range formulation, which for the cases considered also uncomplicates

the boundary conditions and has other advantages. In the present paper this
new differential approximation is developed, and tested on concentrijSpheres

problems . for which exact and approximate solutions are available for comparison.




II  FORMULATION

The spherically-symmetrié system is !‘ shown in Fig. 1. The inner and
outer walls are black, maintained at temperatureé Twa and Twb, respectively.
An absorbing and emitting gas fills the volume. For purposes of exposition
only, the gas is assumed gray, charécterized by a constant absorption
coefficient K.

The intensity of radiation is a function of r and © only: 1= 1(\!} ).
Assuming local thermodynamic equilibrium and letting K = cos e
the equation of transfer can be written, according to Chandrasekl'lan:*l:Z

(with the present sign convention),

pE o+ 25 - xli(ne-B (1)

Here B = U'Tq'/’ﬂ‘ is the blackbody steradiancy, so the emission from the

inner and outer walls is given by

I(ra,}xé.-o) = Bwa , 1(r ,)xzo) = Buw (2)

The general half - range moment of (1) is

(d/d0) Ty + /)27 80,10,0) -nTE +na2TE ] = K|TE - G128 Gnat)] ()

where n 2 0 and the half - range directional moments are defined by

4
1.0 - =it So B ‘I(Y,)l) dp (4)

The half - range moments add directly to give the full-range moments:

= . — -
1,= I:,,_ I, , the average intensity; 1,= 17 + 1,




the radiation flux positive inward; and so on. The equations (3) as they
stand, constitute an infinite system completely equivalent to (1). The
object now is to truncate the system by writing an approximate closure

condition.

Closed systems of half-range moment equations have been obtained by the s0
- called goyble spherical-harmonics method, introduced by Yvon'> in neutron-
—transport analysis, and applied in radiative transfer by Le Sagela.
Yvon's method mimics the conventional spherical-harmonics approach, but
with independent ekpansionSof the intensity on each directional half tange.
This allows discontinuities at}1=0. The first and second approximations
for I(n)l) are among those illustrated in Fig. 2. The first is seen to
be equivaient to the SchusteraSchwarzchildkapproximationA(Chandrasekhar1§
while the second embodies obvious first corrections. Le Sage; wor&aproved
the utility of the method in planar situations; however, as Traugott9 noted,
the approximation is not useful for problems with curvature. At least
part of the difficulty has to do with the symmetrical allocation of the

discontinuity of I(r,yo, as shown in Fig. 2.

It will now be demonstrated that’by moving the discontinuity from
)_}_ = Q0 to o= O= , the structure of
the truncated system can be significantly altered. The rationale of this
move is that é discontinuity is known to arise on the half‘range
©) >»)A > —-1 , because of the inper—sphereAshadow‘

The move allocates the assumed discontinuity fully to this half range,

as shown in Fig. 2.




Before proceeding, it should be mentioned that the other methods

_referenced in the introduction share this interest in dealing with the
inner-sphere shadow. In Olfe's modified differential approximationS, the
radiation from the walls is treated exactly, while only the gas emission

is handled by the differential approximation. However, this means that

in problems with cold walls, the method reduces to just the differential
approximation, with its attendént difficulties. The tonand threemregi0n
averaging methods developed by Chou and Tienlo, and Huntll, explicitly
build shadows into full-range formulations. The two-region method assumes
thatlthe intensity distribution is‘constant on each of 4 2 Pz Eﬂf“(ﬁh/r)a}uz
and [1-(m/r)217 > p > _{ ,

The direction dividing the two regions just corresponds to the édge of the
inner-sphere shadow. The three-region method allows an additional dis-
continuity at )J = 0. Despite the fact that these distributions force
the exact result in the transparent limit, both methods still’exhibit
serious shortcomingsll. Finally, Traugott's method and its relation to the

shadow have already Been discussed in the introduction.

Continuipg the formulation, four moment equations will be retained in
the present a;proximation. The assumed distribution; with the dislocated
jump, is ' ; : | :

. g iy (oo L) (5)
Linp) = AT+ TR (dzp> 0 )
as shown in Fig. 2. Inserting (5) in (4) for N= 0,1 and 2, and

eliminating A*:(r) and C:t(r), one finds the closure
x 6(”:‘: Tt ) (&)
Io - "LZ_ t |

and, since A () = I(v,0)




2w 1(r0) = 6(31-41; ) (1)

In the usual double sphericél-harmonics method, the discontinuity is located

at )L = 0 rather than 0O- This change only affects (7), which appears in

the curvature term iny(3). Thus in the planar limit, the present system is

precisely equivalent to LeSages' ''double Pl approximation'. Using the above

¢losure conditions in (3), one obtains

i

(d/anTy +(t/v)[ 2@fT;) -&(31; 217)] = -wle(r+1) + 2B}
(d/49 T, +(/m)] 8(33;-217) | K |6l -1;) -27B)
(dfdv) Ty +m] 30317 +211) ] -

= ]K.L Eﬂ+ * TTEB]
(dfar) 15 +0[3(37;-217)] W e

i

(%)

i

Using the full-range moments and (6), the first two of (8) combine to

repain the exact flux-conservation equation,

il

Giedaddn) - Wi, iy 1

The boundary conditions for (8) are obvigus, using (2) and (3):




IT (ta) = —T"Bwa IZ () = 57 Bya
| - (10)
L(s) = WBuk I, (%) = 37 Buy

In the remainder of this paper, equations (6), (8), (9) and (10) are
applied to a number of concentric - épheres problems. 'Along the way,
Traugott's method is also appliéd,‘to obtain several new resulté. This

is of special ihterest, since Traugott considered only the problem without
internal heat generation. Discussion of results will mainly be deferred

to Section V.

III ZERO OR UNIFORM HEAT GENERATION BETWEEN CONCENTRIC SPHERES

For a stationary gas in which heat generatioh\proceeds at the rate
S per unit volume, considering only radiative transfer,‘the energy balance

requires

W/ rXd/dv*1,) = X(L,-47B) = -§ (1)
The minus sign preceeding S5 is a result of the sigh convention for Il.
Two classes of problems will be considered:

1.) Bwb # Bwa

1

0, S=0 (no internal heat generation)

i
it

2.) Bwb = Bwa =0, S = Constant (uniform internal heat generation)

‘Because of the @inearity'of the governing equations, one can superpose on




either case the trivial problem Bwa = Bwb # 0 and § = 0, so there is no

loss of generality in téking bwa = 0. Defining a new independent variable

S/K

i

x= (™Yq)/ (Yp =Ya) and the parameters A
TL = }<.(.VB “YZ.) 5 € YQ / (hj ’

an exact integral of (11) can be expressed as

it

IF+1) =1, = [T.0+ $AT /Ce-ife-)x+1] > - [saT el x]  G2)

This replaces the first of the moment equations (8). From (11), using (&),

one finds

- s o

B = 4 (To+A) = (T -I,-I8-17) + £4 ()

which can be used to eliminate MB from the three remaining moment equations:

g\_l.:_ 5_-[““'2.1: . L — e e m.
= | 3T, ?«55*3’@?‘1"?—)]

T il -
4L 4 3MRL - o atepaen-aaten) o9

it 4 5 01,




The boundary conditions (10) complete the specification of the problem.

In the planar limit (E = 1), closed - form solutions of Eqgs. (10),
(12) and (14), in terms of the radiative flux and emissive power, are

found without difficulty. For 4 = 0, Le Sage14 has given

w1 Yt o
. vy 1-T2-()") e
1 = “(BWB”BMO%{TL*‘i il - [T-4(3)]e D"=T, o)

O = (Buw-B)/ Bws-Ew«) = P&k, t) / R(T) (e
where

P (X ,-E-L) __: ’[L(X“ %)&1“{7“ 4(3)(/1] é‘:("L)VLT Lg . L‘__ %(3))111[6:(‘1)'/2’(1 (l—%)ﬂ é:("'*)%’tlux}

| : . Ve =
R (.’CL-) = 2L- (3)_‘ /2' »"CL .»Lz ¥ (3)"'/7- + ’CL}T_‘I" 4(3)l/z}e (i?_) 20

For 4 ¢4 0, the equations yield, trivially,

. (1)

and after straight-forward but lengthy manipulation,

142T + 3TExU-X)

- 1B
(bs"" 1 z

A

1
L &
4-

-
—

_ Texz 3lsinh(0"TX +sinh(0)2T (1-0)] -sinh (1227,
B asih(@%T ¢ (0" cosh ()T, - §]

(18)




Next, the nonplanar case is considered. The radiative flax then
véries with position between the walls for both § =0 and ,&4 0.
However, the dependence on position is a known function, given by
Eq. (12). Thus, for purposes of comparison, only Il(O) in (12) need
be presented. For the case with internal heat generétion, Il(O) will
be presented in terms of the fraction of internally - generated heat

transferred to the inner wall, as in Ref. 7:

. . _qfﬂ" Y::Q_?:_I.‘(O) - 31,0) 09)
Q £T(%-22) S (2,20 1

Before proceeding to the numerical treatment of Egs. (10), (12) and (14)

for the nonplanar cases, closed-form limiting solutions are considered.

Transparent limit

The solutions of Egs. (10), (12) and (14) can be developed as power

series in TL<<1 . Thus one obtains, without complication, for 3,= Q,




- T1.()

it

m (Bwb - ng) + 0) (T'L)

6 = Ghaln)® + (2i)%rr)’ o O(z.)

and for & +0,

a/Q = a';.‘[(me) + @) E-n][ W] + oy

d)s = "4 + O(tu)

Corresponding exact results are, for ,$.= 0 (RhymingB),

10) - TlBu By = Dt

& - 3l vl o

and for X.# 0 (Viskanta and Croébiea),

(20)

(2.1)

(22)

(23)

(24)

(25)




i

Q/a = §-H(E0M0)T 4 oz (20)

——

L. oty (27)

il

b,

Equation (26), although not given explicitly in Ref. 4, is easily extracted.
One can perform the same analysis with Traugott's differential approximation.

The results for,&,= 0, from Traugott's paperg, are
1,0) = T(Bue-Bua) §[(5)2+ 1] €2 (€% 1)(8% 1) + O(T) @9

G = (8%1) {14- Lel @ 1][m/r] [6)2- 1]"'§ + 0L (9

For,g,% 0, the present application of Traugott's method yields

Q. _ ey 7]+Z§z+[5—(s)‘/2]‘§” [5-(5)%2]8* . 285, [3- (%]’
2.(,'5)‘/2_ {(S)v/z 1](2 1)(3‘*4-1)

Q
+ O(tL) (30)

D = L. O(ta) - . (1)




Opaque limit

It is also possible to develop asymptotic solutiohs in terms of i/ﬁlL <¢ d s
when T '—:’[_K-‘- i/(g“”] To is everywhere large. A look at the
planar results, Eqs. (15)=(18), previews someuof the features of the
asymptotic solutions. First of all; unifofmly = v§1id expansiéns of C? and

Cbs in i/’CL << i are not possible befyofxd the first approximation
because of the functional dependence on exp [(ll5uz’tLX-]'.
This gives rise to boundary layers of C)(i/tb)~ thickneés at the walls.
For this same reaéon one finds, secondly, that simple power series in 4 /T_
are not complete; the separate expansions at each wall and in the region
away from the walls all eXhibit exponentially = small terms, as well.
From the expression for the flux integral, (12), it is clear that a uniformly
valid expansion for that quantity is possible, although again, exponentially

- small terms arise.




These features carry over to the nonplanar analysis. Ignoring
exponentially - small térms, application of the method of matched

asymptotic expansions gives, for }£= O , the uniformly - valid result

1.0) = T(Bue-Bua)%(4/T )L 8- c(ng%)/n + O(L/T)] B

and the composite solution

¢

it

(/LX) - $(€,0) /T + OU/TH)] (33)

where

e 1 v (34)

¢ ¢ {%“[_1 ve]x + [1/11)[o- 4(3).,2][1;(%#&1))(][%_4 é('z)s/z'c,,(l-xl gé:(:z)vanxn (35)

Emanuel's asymptotic expansion16 of the exact integral equations gives

the same form as (32) and (33), but with

O
"

L) = 710447 .

L.r’.
o

C{‘%—U%]x + 1 -%[4-A(T/Ae@] - o [T (1-%)] /q,(oo)g (37)




where q.is Hopf's functionl6, which varies mono;onically from

qo = (3)772 to 9 = 710447 .

At the walls & can be expanded in i./TZ, to show that the present and
exact results for ¢ agreé to owu/t ) . Far from the walls
the very close agreement is obviqus‘by inspeétion. Results using the

16

differential approximation are also available . Expanding them, one

finds again, (32) and (33), but with

C = (%)

Wi

£ = C[\ﬁ-—(h‘%)X] - (39

This result for f does not exhibit the boundary - layer structure seen in
either (35) or (37). All three methods however, yield identical leading

terms, which constitute, as Emanuell6 has indicated, the Rosseland

‘approximation:
I, = fw(d/dT)B (%0)
For the heat-generating case, only the leading terr in the expansion:

of the exact system has been given, in Viskanta and Crosbiea‘ Expanding

the present system yields

¢, = T {Jsxu;x][i s (yvré./rk)(i‘;’g)] + kO(i»/’L‘,__)} (4;)‘




which is identical with the exact result. Again, to lowest order, the
Rosseland approximation (40) holds, so the flux can be calculated'exactly

from (41):

G /0 - slee ey |, ol (42)

Mixed regime

A third limiting case occurs when the gas near the inner sphere is
optically thin, while the volume overall is 6ptica11y thick.‘ The requisite
conditions are € >> U, »> 1 | | . Emanue117 has also
analyzed this situation, for 4= 0, using the exact integral equations

and matched asymptotic expansions.

The present system of equations, (10), (12) and (1l4), written in terms
of the inner variable Y /Y, , exhibits one,parametef, T /(‘@*1) .

The inner expansion in T, /(\g_i) < i k ~ gives,

independently of the outer expansion,

O = G/ (a/ry 4 @1 /r)® 4 O[’CL/(%A.)] (43)

and the uniformly-valid result

1,0 = T(By,- Bwa){ 1—.259 T J(e4) + ‘O["tf /@")ZN (&4)




The appropriate outer Qariable is ‘XT:L 'f The equations again
exhibit the parameter Tﬁ_/Cﬁ—i) » but now offer little hépe of.yielding
an analytiéal solution suitable for matching purposes. One can obtain
part of the outer expansion, valid for large distauces form the inner

sphere, by integrating the optically - thick result (40), using (44):

q)(o) _ %[F %:.'11‘ {1\» o(é%—i-)k + O(fﬁ) 45)

LEquations (43); (44) and (45) are identical with the exact results, with
the exceptionl7 that in the exact version of Eq. (44), .259 is replaced

by 1/3.

Numerical solution

Apart from extereme ~jparameter cases, Egs. (10), (12) and (14) are
easily iﬁtegrated numericaily, using thé Adams - Moulten scheme.
Substituting‘(lz) into (14), there are actually three first-order dif-
ferential equatiqns, for Ir 9 I{ o and 1;

Aside from the pafametefs € and T ,k‘ J ‘I.(‘SS = If@)‘-i— 1 0)
also apﬁears in the equations. . “ |

When 4 = O, normalizing the dependent variables by 1,0) ,

the boundary conditions (10) can be‘wtitten




it

0

’WBws, / 11(0)

16 = | | 1,0

(46)
0 51 T, (1)

o

where 1,10 = 0O has been rewritten in terms of 1,0 .

Letting ’yN = ("I‘_‘“ . Iz*‘, 'I?_"‘) ‘ - , two fundamental

solutions, defined by

v'@ = (4,0,0)
(47)
yP = (0,0,1)

: 1 z
are required, Superposing, N = *J( \4. :D\j( )
(a7 i AW

W

satisfies
the conditions at X = 0. Then D and I, (0) are determined By the conditions

at X= 1. Carrying out the superposition and multiplying through by 71,(0)

completes the solution.

When X 4 0, the boundary conditions are

1o 10 -1 14 -6 e)

= which with (48) impl 0 = 0 .
Yp0 0 ; with (48) imply T1,(0),
In order to satisfy the outer - wall conditions, a solution of the homogeneous

systein (,&= 0), satisfying




(49)




IV FIXED TEMPERATURE DISTRIBUTION

BETWEEN CONCENTRIC SPHERES

Another problem in which internal heat generation occurs is posed by
prescribing the temperature distribution, instead of the heatwsource

distribution. Chlsnell has treated this problem both exactly and
approximately, with the object of determining the inner-sphere heat
transfer for cold, black walls He prescribed (N=0, 1, 2)

B = X.N

( 50)

The present, approximate system, Eqs. (8) and (30), partlallv decouple

into two pairs of equatlons, only one pair of which are needed to compute

the 1nner~sphere flux. This pair is

= 3L - 2T, = - - N —
dx - X+ 1/(%-1) = ’CL[ 6(1; Iz) - ZX/M ]
| (51)
L 3 snt e
A X +’ ' X4'1/(E"ij = LL& | / l]

The boundary conditions, from (10), are:
L4 = 1.0 = 0 _ (52)

In the planar‘case(%;j), the solution of this system, for N2 O  gives




| S 3-GR]T [aai)%]T,
Il(o)/qr - + { (%)./2 + "z'z &(3);/1 L (3) ] }{e s e }

M -2+l
_ a'e[ +(3)

L Y (53)
J...

[+

au=t, Guy=3v/a 5 4 =lGermdlag, -gGag /el
)y = N-2

In the general case (% 2| ) the equations (31) are reducible
to the confluent hypergeometric equation. However, the coefficients
in the equation are not convenient numerical values.  On the other
hand, for the range of parameters qf'interest here, this initial-value

problem can be numerically integrated with dispatch.

Closed - form solutions of Traugott's system for Chisnell's problem
can be found, although the algebra gets tedious. Only the case N =
has been solved here, and the result for the inner-wall flux is too

involved to present; except in an important limiting form, as ‘E-ﬂr e

1,0)/w y %§qu9%]Y@Q/ZWJ

Y(To = 2asli-(s)%]Tiet, {(, [.g 9(,;)%] 'k (s)’zu,_

—— { 6 - I_‘S +3("5)’121ch+ 5[(5)"‘1“‘11 T,tk e(g)ﬂlz-fcl'

(54)

Z2(T) = L_S_-#(S)./,_TL+10t21‘e£l+(§)'/z] (5 [3 Z(S)V"CL] _isYe -] T,




V. DISCUSSION

In this section, comparisons are made between the exact results and
the results of the present and various other approximate methods. Those
cases where differences are sharpest are emphaéized. Additional results

are available from the author.

No heat generation

First of all, the results of all the methods considered agree in the
opaque limit. Some differences in first corrections for finite opacity,

given in Eqs, (32) - (39), have already been discussed.

In the important transparent limit, a single curve describes the
exact vardiation of emissive power with ‘T/'ﬁb ~, as shown in Fig.3.
Coincident with this are the limiting results from Olfe's modified
differential approxiﬁation8,~énd from the regional'averaging’methodslo’ll,
Traugott's reéult, Eq. (29), appears in Fig. 3 as a famiiy of curves, due
to a spurious dependence on radius ratio § . Also dependent 6n ‘g ;
and much less accurate,are’the spherical-harmonics reéults, not shown.

Finally, the limiting result of the present method, Eq. (21), is plotted

in Fig. 3. While not exact, it is a single curve, with correct inner-wall




temperature slip, and reasonable accuracy elsewhere,

The heat flux at the inner sphere is just W ('Ewb - 'Evua,) 9
in the exact transparent limit. Again, not ali of the approximations
yield the correct 1imiting forms. Traugott's result, Eq. (28), is in
error by a factor ranging from Jg ill-\— (5)'2 ] to

%_ij,+ (2) 1 . In the spherical - harmonics resultg,
the factor can exceed 2. ' The regionél averaging mefhodélo’11 give the
exact result, but the present result, Eq.(ZO), is‘also exact, and

without having built in an inner~sphere‘shadow.

Figures 4 and 5 display some numerical results that indicate
the behavior of the present approximation for intermediate values of

opacity and radius ratio.

Uniform heat generation

For this case also, the important differences among resdlts are in
the optically - thin regime. The transparent limit of the heat-transfer
ratio Q. / Q , is shown in Fig. 6. Here, in contrast
with the case of no internal heat generation, it caﬁ be seen that none of
the approximations yield the éxact limit.k A‘surﬁrising result is the
performance of Traugott's method, Eg. (30):] ;s the radius ratio tends
to infinity, the heat-transfer ratio‘tends to a finite Qaiue, ;138, instead
of the correct result, which is zero. The differentiai apprbximation, to

which 01£85 method reduces here, commits errors of to 50 per centl}




; ‘ , 11
The two -region method, not shown, as much as doubles this error .

The three-region method breaks down in the planar limit, as discussed
by Huntl% Finally, the 1imiting result from the present method,

Eq. (22) is plotted in Fig. 6, indicating a clear improvement in the
prediction of Ql/Q’ This improvement, it turns ouﬁ, is independent of
the form assumed for I on 0> p 2 -1 , once
continuity has been assumed ovef i 2 }*, Z"O,k « The same
is true of the transpareht equilibrium heatetraﬁsfer result. For the
etﬁer quantities, the present method might be reconstructed to achieve
somewhat better accuracy, b& explicitly building in the iﬁner~sphere

shadow. The price of course would be loss of generality;

Some numerical results for T, = 4 ~ are also

presented in Fig. 6, to illustrate the trend with increasing opacity.

The dimensionless emissive power (bs , in the transparent limit, is
just‘the trivial fesult {; ; by all the methods; - Tor finite opacity,
one useful plot comparing some approximate and exact results can be
found in Hunt's paperl% _ These are partially‘repeated here in Fig. 17,
to which the present results have been added. The comparison favors the
B*reglon method near the inner sphere,.and the present method near the

outer sphere. A more detailed comparison shows the advantage going to

the present method as the geometry becomes more planar.




Fixed temperature distribution

Chisnellzhas compared the exact and two approximate predicﬁions
for inner-sphere flux, for various fixed temperature distributions and
radius ratios. One of his approximatibns was simply the planar integral
formula. The other method was the differential approximation, to which

Olfe's method8 again reduces here.

In Fig. 84, Chisnell's results are presented for the large radius-
ratio case ( ‘§==ii ) with uniform temperature. The present results are
also shown, and clearly are superior tb those of‘the approximations
considered by Chisnell. The order of occuracy indicated was found for all
the cases considered by Chisnell. The comments concerning the unimportance
of the assumed form for I on -1 & o o ~, which can be found
in the discﬁssion of the transparént limit of Qi/Q, also hold for Chisnell's

problem.

In order to plot the closed-form result found using Traugott's
approximation, the exact and present results afe repeated on a reduced
scale in Fig. 8b. The unexpected breakdown of Traugott's method, again

for a problem with internal heat generation, is dlearly illustrated.

CONCLUSTON

Motivated by the various failures of existing approximations in
conceﬂfrié . spheres problems, a new differential approximation for fadiative
trénsfer with spherical symmetry has been presénted;, fhefapproximation is

closely related to the double Pl (spheriéél harmonics) method, described




by Lesagelé, to which it reduces in the planar limit. The difference
between the two is the result of a single, crucial change. In the new
method, the discontinuity in the assumed directional-distribution of
intensity is shifted, to lie just within the radially outward directional

half range.

The new approximation has beeh applied to a variety of concentric-
spheres problems with and without internal heat generation, reproducing
all the essential behavior of the exact solutions. Along the way,
Traugott's approximation has been applied for the first time to cases with
internal heat generation, uncovering important defects in that method.
Over the range of problems treated, the new method has been more consistently

satisfactory than any of the other approximations considered.
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CAPTIONS

Fig. 1 Concentric - spheres geometry

Fig 2. Directional distributions of intenstity of radiation

Fig. 3 Variation of emissive power with radius,

Transparent limit, no heat generation.

Fig. 4 - Variation of emissive power with position between spheres,
No heat generation, optical thicknesses and radius ratios
as indicated.

Fig. 5 Variation of inner-sphere heat flux with'optical thickness,
No heat generation, radius ratios as indicated.

Fig., 6 Variation of inner-sphere heat flux with radius ratio.
Uniform heat generation, transparent limit except where
indicated.

Fig. 7 Variation of emissive power with radius. Uniform heat generation,
optical thickness T, = .095 .

Fig. 8a Variation of inner-sphere heat flux with optical thickness.
Uniform temperature (N=0), radius ratio € = 11,

Fig. 8b - Reduction of Fig. 8a, in order to include the result from
Traugott's approximation.
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